
 

 

 

 

 

 

Faculty of Applied Science 

University of Toronto 

 

 

 

MOST Microsatellite Project 

State Estimation using Kalman Filter 

Final Report 

 

 

 

May 19, 2000 

 

 

 

 

 

 

 

 

 

Report by: Charles Lidstone 

Stud. No.: 920545400 



 

-i-   

 

Abstract 

 An extended Kalman filter algorithm for attitude estimation based on Earth’s magnetic 

field measurements is discussed. A fixed gain state observer is implemented. The observer 

algorithm was simulated with real satellite magnetometer data from UoSAT-OSCAR-22 to 

verify the algorithms validity. 
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List of Symbols 
 (Kinematics & Dynamics only) 

  I
C q  is the attitude quaternion of the Control CS with respect to the Inertial CS, 

O
C q  is the attitude quaternion of the Control CS with respect to the Orbit CS, 

  CI
Cω  is the four-vector representation of the angular velocity CI

Cω ,  
  CI

Cω  is the angular velocity of the Control CS relative to the Inertial CS 
   expressed in the Control CS 
  CO

Cω  is the angular velocity of the Control CS relative to the Orbit CS 
   expressed in the Control CS 
 

   Î̂  is the moment of inertia of the spacecraft, and 

  gC  is the applied torque expressed in the Control CS. 
  gg

C g  is the gravity gradient torque expressed in the Control CS. 

  O
C k  is the z-axis unit vector for the Orbit CS expressed in the Control CS 

  oω  is the orbital rate 
( )qR  is the 3x3 rotation matrix formed with the quaternion q  

[ ]q  is the 4x4 matrix representation of quaternion left-multiplication 
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1. Introduction 
 Attitude determination will be a critical function on MOST. Like all satellites, MOST will 

begin its mission in an unpredictable tumble. Even so, the mission of the spacecraft, to 

observe micro oscillations in stars, requires it to maintain precise attitude for many weeks 

at a time. The attitude control system must be capable of driving MOST to its desired 

attitude from a wide variety of initial conditions and with great precision. The capabilities 

of the attitude control system are greatly affected by the quality of the measurements it 

uses. MOST will require many sensors working together to provide the attitude control 

system with enough information. One of those sensors is a set of magnetometers. 

 
 Magnetometers measure Earth’s magnetic field vector in three component directions as 

seen from the spacecraft. The Earth’s magnetic field vector as seen from the Earth for a 

particular point in space can be determined [13]. Comparing these two vectors yields 

information about the attitude of the spacecraft relative to the Earth. The information is 

incomplete, however, because it is not possible to determine the rotation of the spacecraft 

about the magnetic field vector direction. The direction of the Earth’s magnetic field vector 

varies with position. By making use of many measurements as the spacecraft orbits, it is 

possible to completely determine spacecraft attitude. This report presents an algorithm for 

determining attitude from magnetometer measurements based on the extended Kalman 

filter (EKF). To verify the EKF algorithm presented, data from a real satellite was used, 

and the attitude estimate produced was compared against a real satellite. 

 
 In order to implement an EKF algorithm, the attitude kinematics & dynamics of the 

spacecraft must be known. Attitude kinematics & dynamics are presented in Section 2. 

State estimation theory and the EKF are developed in Section 3. Section 4 contains a brief 

discussion about how sensors on MOST could be used in an EKF algorithm. Section 5 

presents the steps necessary to make use of magnetometer measurements in an EKF. Some 

modifications to the theory presented in Section 2 through Section 5 was necessary due to 

the properties of the satellite selected for comparison. Section 6 is a discussion of the 

satellite selected and the modifications made. Section 7 is a discussion of the results of 

simulations and experiments using the EKF algorithm developed. Finally, conclusions are 

drawn, and the direction of future work is suggested. 
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2.  Attitude Kinematics & Dynamics 

 State estimation depends on knowledge of the satellite’s attitude kinematics and dynamics. 

In order to discuss these principles, coordinate systems and coordinate representations must 

be defined. It is then possible to present the satellite equations of motion.  

2.1 Coordinate Systems 

 The coordinate systems discussed here are related to Attitude Kinematics & Dynamics 

only. Several other coordinate systems will be used in relation to Earth’s magnetic field 

vector  determination. They will be discussed in Section 5.1.1 and 5.1.2. Coordinate 

systems associated with UO-22 are discussed in Section 6.2.1.  

 

 Attitude equations of motion do not depend on the location of coordinate frame origins. 

This simplifies the definition of the coordinate systems used in this section. 

2.1.1 Inertial Coordinate System (Inertial CS) 

The Inertial CS is a right orthogonal inertial coordinate system. The location of the origin 

is not significant; it will be taken at the center of mass of the satellite for simplicity. The z-

axis is taken to be parallel to the rotation axis of the earth, positive north. The x-axis is 

parallel to the line which connects the center of the earth to the vernal equinox. The vernal 

equinox is the point where the equator meets the ecliptic on the first day of spring. The 

ecliptic is the great circle which lies in the earth’s plane of rotation about the sun. 

2.1.2 Orbit Coordinate System (Orbit CS) 

The Orbit CS is a right orthogonal coordinate system. The origin is placed at the center of 

mass of the satellite. The z-axis points toward the center of the earth. The x-axis points in 

the orbit normal direction, which is the vector perpendicular to the plane of the satellites 

orbit about the earth, oriented in the right handed sense with respect to the orbit direction. 

The y-axis points in the direction of instantaneous velocity.  
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Figure 2.1: Orbit Coordinate System 

2.1.3 Control Coordinate System (Control CS) 

The Control CS is a right orthogonal coordinate system. The origin is placed at the center 

of mass of the satellite. The axes are aligned with the principal axis of the satellite’s 

moment of inertia. The z-axis is chosen to point approximately in the direction of the 

science instrument. 
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Figure 2.2: Control Coordinate System - MOST 

2.2 Attitude Representation (Quaternion) 

 Traditionally, rotations are represented by Euler angles. Using the Euler angle method, the 

attitude of the spacecraft, which is the attitude of the Control CS, would be characterized 

by three angles, zyx θθθ ,, , representing rotations about each of the x, y and z axes of the 

Inertial CS, respectively. Euler angles are easy to visualize for small rotations. For 

rotations of less than 20º, zyx θθθ ,,  can be easily interpreted as yaw, pitch and roll, 
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respectively. For general orientations, not restricted to small angles, Euler angles have 

some disadvantages; most notably, the “gimbal lock” singularity. An example of  “gimbal 

lock” occurs when performing the rotation zyx θθθ ,90, °= . The rotation of °90  about the 

y-axis makes it impossible to distinguish between rotations about the x and z axes. Thus, 

attitude quaternion, an alternative representation, has been chosen for the attitude control 

system design on MOST.  

Z

YAW

ROLL

PITCH

Y

X

 

Figure 2.3: Euler Angle Rotations 

2.2.1 Introduction to Quaternions 

 Quaternions are an extension of complex numbers into a four dimensional space. A 

complex number has one real part and one imaginary part. 

( )
1−=∗

+
ii

iyx       (2.1) 

 A quaternion has one real part and three distinct imaginary parts corresponding to three 

distinct roots of –1: 

( )zyxw kji +++            (2.2) 

1
1
1

−=∗
−=∗
−=∗

kk
jj
ii

 
jkiik
ijkkj

kijji

=∗−=∗
=∗−=∗

=∗−=∗
 

 

 Quaternions do not exhibit the “gimbal lock” singularity present in the Euler angle 

representation. 
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 Some important properties of quaternions of significance for this project are listed. 

Quaternions are not commutative, so the order of multiplication must be preserved. 

1221 qqqq ⊗≠⊗              (2.3) 

Quaternion multiplication can be written as matrix multiplication in much the same way as 

the cross product of two three vectors. 

[ ] { } 122121 qqqqqq ==⊗        (2.4) 

where 

[ ]


















−−−
−

−
−

=

1111

1111

1111

1111

1

wzyx
zwxy
yxwz
xyzw

q   { }


















−−−
−

−
−

=

2222

2222

2222

2222

2

wzyx
zwxy
yxwz
xyzw

q  (2.5) 

 

 Quaternions have many other useful properties which will not be detailed here.  

2.2.2  Quaternions as Rotations 

Any arbitrary series of Euler rotations can be reduced to a single rotation about an axis, 

sometimes called the screw axis. Quaternion based rotations make use of this fact. The 

attitude quaternion is defined as: 

zyxw
q

kji
q

q +++=







=

4

       (2.6) 
















=

z
y
x

q  wq =4        (2.7) 

where 

( )2sinˆ θnq =   ( )2cos4 θ=q     (2.8) 

and n̂  is a unit vector in the direction of the screw axis.  
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Figure 2.4: 90º Rotation about Screw Axis 

 

Given the quaternion attitude representation a . To rotate it with a quaternion q  you must 

left multiply and right multiply as follows. 
1−⊗⊗= qaqarotated                (2.9) 

It is also possible to write a rotation quaternion as a rotation matrix as follows: 

( ) ( )
( ) ( )
( ) ( ) 
















++−−−+
++−+−−
−++−−

=
2222

2222

2222

22
22
22

)(
wzyxxwyzywxz

xwyzwzyxzwxy
ywxzzwxywzyx

qR    (2.10) 

 

Finally, it is useful to define ω  here, where ω  is the angular velocity vector: 









=

0
ω

ω  















=

z

y

x

ω
ω
ω

ω     (2.11) 

2.3 Equations of Motion 

 The equations of motion for the attitude of a rigid body are 

[ ] I
C

CI
C

I
C

dt
d qωq

2
1=              (2.12) 

CI
C

CI
C

CI
CC

dt
d ωIωωIg ˆ̂ˆ̂ ×+=        (2.13) 

 The torque gC  is the total torque on the system. It includes all control torques and 
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disturbance torques. These equations will be modified in several ways for the purposes of 

this project. See Section 6.2. 

2.4 Numerical Methods 

 The nonlinear equations of motion were solved using the fourth order Runge-Kutta 

method. See [5] for details. 

 

 Given: 

oo fandtf
dt
d ,),( xxx =      (2.14) 

 the solution is given by: 

( )43211 22
6
1

kkkkkk WWWWt +++∆+=+ xx     (2.15) 

 where: 

( )tttWfW

tttWfW

tttWfW

fW

kkk

k
kk

k
kk

kk

∆+∆+=






 ∆+∆+=






 ∆+∆+=

=

,
2

,
2

2
,

2

34

2
3

1
2

1

x

x

x
       (2.16) 

 In practice some investigation should be done to insure that this solution converges for the 

time step used. 
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3. State Estimation 

 One method for estimating the attitude of a dynamic system is the use of a state observer 

from control systems theory. The discrete time state observer will be developed here. The 

Kalman filter based observer gain will be presented as the optimal solution to the state 

estimation problem. A practical algorithm for implementing the Kalman filter is shown. 

Finally, the derivation is duplicated for a non-linear system. 

3.1 State Model 

 The general state model for a non-linear system is given by: 

( ) ( ) ( )
( ) ( ) ( )tttgt

ttttft
vxy

wuxx
+=

+=
),(

),(),(!
        (3.1) 

 where  

   x(t)  – the state vector,  
   u(t)  – is the vector formed by inputs to actuators, 
   y(t)  – is the vector formed by outputs from sensors, 
   w(t) – is the process noise, and  
   v(t)  – is the sensor noise.  
  

 It is important to note that this is a continuous time model. These equations were solved 

using numerical methods discussed in Section 2.4. With numerical methods, the continuous 

time interpretation used is essentially interchangeable with a discrete time interpretation. 

 

The initial development of observer theory and the Kalman filter are presented using the 

following linear time varying state model. 

kkkkkk

kkkkkk

vuDxCy
wuBxAx

++=
++=+1       (3.2) 

3.2 Observers 

 In order to control the attitude of the satellite, an estimate of the state, xk, is desirable. The 

state estimate will be denoted by kx̂ . An estimate of the state could be formed by direct 

computer simulation of equation (3.2). The abilities of this method to accurately predict the 

state would be contingent on knowledge of the initial condition, x0. The initial condition, 
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however, is not generally known. An estimate can be formed by guessing x0, and then 

correcting with measurements from the actual system. Methods for implementing 

corrections based on sensor measurements are called observers. Two observers useful in 

understanding the Kalman Filter are presented below. The derivation follows [4] and [9]. 

3.2.1 Identity Observer 

 The full state identity observer uses the measurement of yk, and all earlier measurements to 

predict 1ˆ +kx . 

( )
kkkkk

kkkkkkkk

uDxCy
yyKuBxAx

+=
−++=+

ˆˆ
ˆˆˆ 1             (3.3) 

   

 It can be shown that the state estimation error kkk xxe −= ˆ  obeys the difference equation: 

( ) kkkkk eCKAe −=+1                (3.4) 

If the eigenvalues of kkk CKA −  are stable, the estimation error will asymptotically 

approach zero. 

3.2.2 Current Estimator 

 If the computation time to generate kx̂  is short compared to the sample period, the identity 

observer can be improved by making use of yk+1 in the estimate of 1ˆ +kx . An a priori 

estimate, −
kx̂ , is formulated: 

1111ˆˆ −−−−
− += kkkkk uBxAx       (3.5) 

Then, the estimate is corrected when the measurement is made to form an a posteriori 

estimate, kx̂ . 

( )kkkkkk yxCKxx −+= −− ˆˆˆ       (3.6) 

 This observer is known as the current estimator. It can be shown that the estimate error 

formed with (3.5) & (3.6) obeys the difference equation. 

( ) kkkkkk eACKAe −=+1       (3.7) 
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 If the eigenvalues of kkkk ACKA −  are stable, the estimation error will asymptotically 

approach zero. 

3.3 Optimal Estimation 

 The Kalman Filter is a solution to an optimal estimation problem. The observer gain can be 

chosen to minimize the estimate error covariance 

[ ]T
kkkkk E )ˆ)(ˆ( xxxxP −−=         (3.8) 

 in the presence of process and sensor noise, wk and vk. If the noises are independent 

multivariate normal distributions with zero mean and covariance matrices, Qk and Rk, 

respectively then the solution to the minimization is the Kalman filter. 

( )
( )k

k

Np
Np

R0v
Q0w

,~)(
,~)(

           (3.9) 

 The optimal observer gain is given by 

( ) 1−
+= k

T
kkk

T
kkk RCPCCPK        (3.10) 

 where Pk is the solution to the discrete time algebraic Riccati equation. 

( )[ ] k
T

kkkk
T

kkk
T

kkkkk QAPCRCPCCPPAP ++−=
−

+

1

1             (3.11) 

 

The Kalman filter is only optimal if the conditions stated are met, and in practical 

application noises do not have normal distributions. The Kalman filters optimality is not 

the most interesting aspect of its function however. 

 

Consider that the state covariance matrix can be viewed as a measure of the uncertainty of 

the state model, and the sensor covariance matrix can be viewed as a measure of the quality 

of the measurement. In this way the Kalman filter has important implications. The sensor 

covariance matrix weighs the use of each sensor based on its individual accuracy. If a 

sensor becomes unreliable due to a known condition, the sensor covariance could be 

changed to reduce that sensor’s role in the state estimate. The state covariance matrix 

weighs the use of the a priori estimate in the a posteriori estimate, so if the model is very 

uncertain then the sensors can be emphasized over the prediction. The issue of sensor 
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weighting will be discussed further in Section 4. Clearly, the Kalman filter is very useful 

when dealing with ‘real’ sensor performance and practical state models. 

3.3.1 Practical Kalman Filter Algorithm 

 In practice, the optimal estimator discussed above is implemented by successive time and 

measurement updates. First, a time update is performed to predict the a priori state 

estimate and state error covariance. Then, a measurement update is performed to form the 

corrected a posteriori state estimate and state error covariance. This sequence of time and 

measurement update is then repeated for successive time intervals. 

 

 The time update equations are: 

(compute a priori state estimate)  1111ˆˆ −−−−
− += kkkkk uBxAx  (3.12)

(compute a priori error covariance)  1111 −−−−
− += k

T
kkkk QAPAP   (3.13)

The measurement update equations are: 

(compute observer gain)  ( ) 1−−− += k
T

kkk
T

kkk RCPCCPK   (3.14)

(compute a posteriori estimate)  ( )−− −+= kkkkkk xCyKxx ˆˆˆ   (3.15)

(compute a posteriori error covariance)  ( ) −−= kkkk PCKIP   (3.16)

3.3.2 Extended Kalman Filter 

The Extended Kalman Filter makes use of the same basic observer theory already stated 

and applies it to non-linear systems of the form: 

kkk

kkkk

kg
kf
vxy

wuxx
+=

+=+

),(
),,(1               (3.17) 

 

 Cycle by cycle, these equations can be linearized about the current a priori state estimate. 
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   (3.18) 

 Now, we can use these matrices in the calculation of error covariance. 

 
 EKF time update equations are: 

(compute a priori state estimate)  )1,,ˆ(ˆ 11 −= −−
− kf kkk

uxx   (3.19)

(compute a priori error covariance)  1111 −−−−
− += k

T
kkkk QAPAP   (3.20)

EKF measurement update equations are: 

(compute observer gain)  ( ) 1−−− += k
T

kkk
T

kkk RCPCCPK   (3.21)

(compute a posteriori estimate)  ( )),ˆ(ˆˆ kg kkkkk
−− −+= xyKxx   (3.22)

(compute a posteriori error covariance)  ( ) −−= kkkk PCKIP  (3.33)

 

 Along with the properties of the Kalman Filter already mentioned, there are two interesting 

additional implications for the Extended Kalman Filter. All of the state estimate 

propagation equations rely on the non-linear state models. In this way, the filter does not 

imply linearization of the attitude control system in general. Finally, the gain matrix, K, is 

dependent on the linearized version of ),( kg kx . This has the effect of amplifying the 

sensors response curve in the region that is actually affecting the measurements at that 

instant. 
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4. Sensor Models 

 The satellite will have four types of sensors for the purpose of attitude determination: rate 

sensors, magnetometers, sun sensors and a star tracker. The sensors will be described 

briefly here. Details on the magnetometers can be found in Section 5. 

4.1 Rate Sensors 

 There will be at least three rate sensors mounted in a linearly independent fashion. More 

rate sensors can improve the quality of the data provided but also increase cost and 

complexity. 

4.2 Magnetometers 

 Details on magnetometers are discussed in Section 5. 

4.3 Sun Sensors 

 Sun sensors measure the angle of the sun relative to the plane in which the sensor is 

mounted. Depending on the number of sensors and their orientation on the satellite, several 

restrictions may apply. A sun sensor needs to be in the sun’s bore sight to within its 

sensitivity angle, for example +/- 30º, in order to provide useful data. While a particular 

sensor is not pointed at the sun, that sensor needs to be ignored so that it does not interfere 

with the attitude determination.  

4.4 Star Tracker 

 Star trackers can operate in several modes. A differential star tracker measures the 

movement of fixed points of interest in its field of view. Other star trackers compare an 

image with a reference star field.  

 

 One especially interesting aspect of star tracker operation is that it will not be able to 

provide readings at the same rate as the other sensors. The star tracker will operate at 1 Hz 

while the other sensors may operate as fast as 10Hz. 
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5. Magnetometers 

 Magnetometers are particularly convenient sensors for satellite attitude determination. 

They are relatively inexpensive and can give information about the satellite’s absolute 

attitude. Unlike gyros, magnetometers have no drift. For this project, it will be assumed 

that the magnetometers generate a vector representing the magnetic field measured along 

each axes of the Control CS. Using the IGRF model described below, the Earth’s magnetic 

field vector at the satellite’s known location can be determined. Finally, the measurement 

can be compared with the Earth’s magnetic field. Using observer based methods described 

in Section 3, the correct attitude for the spacecraft can be found. 

 

5.1 IGRF Model 

 The International Geomagnetic Reference Field  (IGRF) model is a series of coefficients of 

the spherical harmonics of the Earth’s magnetic field. They can be used to determine the 

Earth’s magnetic field to good precision at any position and time. A C program, 

‘IGRFgeodetic.c’, [13], can take satellite position in Altitude-Latitude-Longitude 

coordinates and produce the vector of the Earth’s magnetic field at that position in North-

East-Down coordinates. 

5.1.1 Altitude-Latitude-Longitude Coordinate System (ALL CS) 

 The ALL CS is an Earth fixed spherical coordinates system. Latitude and Longitude are 

defined in the traditional way used in cartography. Altitude is defined to be the distance 

from the Earth’s surface for a spherical Earth. 

5.1.2 North-East-Down Coordinate System (NED CS) 

 As an observer standing on the Earth, one can consider the environment to be flat and the 

directions North, East and Down equivalent to the x-axis, y-axis and negative z-axis in the 

classical Cartesian coordinate system. This approximation is of little use for distances 

greater than a few hundred kilometers. Unfortunately, this is the traditional way to view the 

Earth’s magnetic field.  



 

  

 

 University of Toronto - 15 - MOST: Attitude Estimation

 

 It is a relatively simple matter to transform the NED CS into the Orbit CS. The ‘Down’ 

direction in the NED CS is equivalent to the z-axis of the Orbit CS. Thus, the NED CS 

must be equal to the Orbit CS to within a rotation about the z-axis of the Orbit CS. The 

angle of that rotation is given by: 

( )




+
−

=+×=
descendingif
ascendingif

alatitudeninclinatioaz 1
1

,θ          (5.1) 

 where: 

 inclination  is one of the classical orbital elements of the satellite,  
 latitude  is the latitude dimension of the ALL CS, 

ascending is true while the satellite is traveling from the south pole to the  
 north pole, or while the latitude is increasing, 

descending is true while the satellite is traveling from the north pole to the  
 south pole, or while the latitude is decreasing. 

 

 The matlab script, ‘IGRFgeodetic.m’, passes ALL CS coordinates to the program 

‘IGRFgeodetic.c’ and converts the returned values to the Orbit CS. Note that the 

inclination variable, set for UO-22 in ‘IGRFgeodetic.m’, can be easily adjusted. 

 

5.2 State Estimation Based on Vector Measurements 

 One single vector measurement contains information of two of the three attitude degrees of 

freedom only. One way to determine full attitude from magnetic field measurements is to 

use the measurements in an observer as described in Section 3. To form an observer based 

on vector measurements, we must define a measurement estimate, an innovation quantity, 

and a state estimate update formula.  

 

 Given the satellite’s position in orbit and the IGRF model discussed above, it is possible to 

know the Earth’s magnetic field vector in the Orbit CS. Using the a priori attitude estimate, 

the magnetic field vector can be expressed in the Control CS. The measurement estimate is 

thus available although not quite in the classical form of ),ˆ( kg k
−x  in (3.17). 
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O
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O
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k

R
modelIGRFpositionsatellitegkg

             

(5.2) 

 Next, an innovation quantity must be defined based on the measurement estimate, ŷ , and 

the actual magnetometer measurement, y . 

 

 Typically, the innovation is defined to be the difference between estimated and actual 

measurement values, as seen in (3.3). However, in the case of vector measurements of 

attitude, the difference operation is not appropriate. The cross product is used to form the 

innovation instead, see [2]. A modification of that definition is described below. 

 

 The result of yy ×ˆ  is a vector in the direction of the axis of rotation required to align ŷ  

with y . Also, if ŷ  and y  have unit magnitude, the magnitude of yy ×ˆ  is the sine of the 

angle between them. The quaternion based rotation required to align the estimate with the 

measurement is given by v  as follows:  
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 The value v  will frequently be very close to zero. Therefore, the above definition for v , 

while mathematically precise, is not numerically stable. Since it is not necessary to recover 

the precise value θ , the following approximation will be used instead.  
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 The rotation v  will be considered the innovation of the observer. 
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 Instead of the standard state estimate update formula, rotation of the state estimate will be 

used. 
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 qK  is the observer gain and can be specified by way of a Kalman filter. In [2] ω̂  was 

updated using a conventional definition of innovation. No update of ω̂  was used here 

because vector measurements of magnetic field do not directly affect the rates. However, 

due to the rotating coordinate systems an update of ω̂  may be required. This area was not 

investigated in detail. It should be considered carefully in any future work. 

5.2.1 Kalman Filtering Based on Vector Measurements 

 To form a Kalman filter from the observer above, the linearization outlined in Section 3 

must be carried out, and covariance and gain update formulas must be defined. This 

process was not completed due to time constraints, but a direct application of the Kalman 

filter formulas in Section 3 should yield good results. The Kalman update formulas from 

[2] were attempted, see Section 7.5. 
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6. UoSAT-OSCAR 22 (UO-22) 

 In order to evaluate the attitude estimation algorithm developed in Section 5, real satellite 

data needed to be used. UO-22 was selected as the test subject. UO-22 is a Radio Amateur 

Satellite launched by the University of Surrey in 1991. It has available magnetometer 

measurements, known physical attributes and a known orbit. It is in a low earth orbit with a 

98º inclination, very much like MOST. This is ideally suited to magnetometer based 

attitude determination. Also, its attitude is known to within a single rotation, about its 

spinning axis, because it is gravity gradient and single-spin stabilized. 

 

6.1 UO-22 Telemetry & Orbital Elements 

 The Space Flight Laboratory had easy access to telemetry data and orbital elements from 

UO-22 because of previous work [3]. Whole orbit telemetry data files and ground station 

reports of orbital elements from June to December 1999 were available. The program 

‘vbtlm.exe’ was used to decode the telemetry files and output the data as ASCII text.  

6.1.1 Magnetometer Readings 

 ‘vbtlm.exe’ was used to decode magnetometer readings for the time window: 25 Nov 1999 

02:26:35 to 25 Nov 1999 23:59:35. The magnetometer telemetry data was in the form of 

voltage readings taken from the instruments. No information about the transformation from 

voltage level to magnetic field intensity was available. By looking at how magnetometer 

readings were encoded for UoSAT-OSCAR 11 (UO-11), a similar satellite built by the 

same organization, it was possible to make some assumptions about UO-22’s 

magnetometers. According to [8], UO-11’s magnetometer voltage readings were decoded 

by the following functions: 

( )
( )
( ) TNHaxisZmagNav

TNHaxisYmagNav
TNHaxisXmagNav

µ
µ

µ

691507.0:
3.691523.0:

681485.0:

−=
−=
−=

        (6.1) 

 where N is the voltage read from the relevant magnetometer. An assumption was made that 

UO-22’s magnetometer readings must be of a similar nature. Thus, it was assumed that the 
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magnetometers on UO-22 are linear with a constant offset.  

 

 The offset for the x-axis and y-axis magnetometer measurements on UO-22 could be 

calculated. The satellite rotates about its z-axis once every ten minutes. Due to the rotation 

about the z-axis, the x-axis and y-axis vector components change cyclically between 

positive and negative. During ten minutes of satellite motion, the Earth’s magnetic field 

vector changes very little. Therefore, the mean of the x-axis and y-axis components must 

be zero. Hence, the average reading of the x-axis and y-axis magnetometer should be equal 

to the offset value, and the offset is removed by subtracting the average from the 

measurement. The same idea was used to eliminate the offset term from the z-axis 

measurement although the justification is less direct. The formulas for UO-11’s 

magnetometers show that offset values for different axes are almost equal. The calculated 

offset values for UO-22’s magnetometers were almost equal as well. 

 

 Only the direction of the measured magnetic field vector is required. Thus, it is only 

necessary to consider the relative magnitude of the three sensor readings. The constants of 

proportionality for the magnetometers on UO-11 were 0.1485, 0.1523, 0.1507. While these 

are not exactly equal, the difference is small. This motivated the assumption that, for UO-

22, the difference could be ignored. With the assumption of a fixed constant of 

proportionality, no attempt to discover the value of the constant is necessary. 

 

 To process the telemetry data from UO-22, the three axis magnetometer measurements 

were read from a text file, the average reading subtracted, and the magnitude normalized. 

This was done by the function ‘getbmag.m’. Thus, a unit vector in the direction of the 

measured magnetic field vector was available. 

6.1.2 Orbit Propagation 

Using Satellite Tool Kit it was possible to use the available orbital elements to project UO-

22’s orbit during the time window of interest, defined in 6.1.1. A report containing a 

representation of the satellites position above the Earth in x-y-z Earth fixed coordinates 

was generated from Satellite Tool Kit. This data was converted to the ALL CS for use by 
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‘IGRFgeodetic.m’ using the following formula. 

( )

6371.2km

tan180

sin180

1

1

2/1222

−=






°=






°=

++=

−

−

RAlt
x
yLon

R
zLat

zyxR

π

π     (6.2) 

6.2 Attitude Kinematics & Dynamics of UO-22 

 Some basic changes to the coordinate systems and equations of motion to be used must be 

made to accommodate UO-22. 

6.2.1 Control Coordinate System (Control CS) 

The Control CS is specified differently for UO-22. It is a right orthogonal coordinate 

system. The origin is placed at the center of mass of the satellite and the axes are aligned 

with the principal axis of the satellite’s moment of inertia. For UO-22 the z-axis is chosen 

to point approximately along the gravity gradient boom, which is the axis of least moment 

of inertia. 

Z

Y

X

 

Figure 5: Control Coordinate System - UO-22 

6.2.2 Gravity Gradient Effect 

The gravity gradient effect describes the effect of minor differences in the force of gravity 

at different points in a satellite. An orbiting object tends to align its axis of least moment of 
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inertia with the gravitational field. For instance, a barbell-shaped satellite like UO-22 

would tend to align its z-axis with the gravitational field. If the z-axis were parallel to the 

gravitational field, then the tips of the satellite would be equal distance from the earth. The 

forces on the satellite in the direction of the gravitational center of mass would be 

balanced. This is an unstable equilibrium however. Any small disturbance from that 

orientation would put one end closer than the other. There would be greater force on the 

closer end causing an unbalanced torque. While the orbit would not be affected overall, the 

unbalanced torque would tend to align the axis of least moment of inertia with the 

gravitational field. 

 

 The gravity gradient effect can be modeled mathematically [10] as 




 ×= O
C

O
C

ogg
C kIkg ˆ̂3 2ω        (6.3) 

with 

( ) O
O

O
C

O
C kqRk ×=               (6.4) 

 Where oω  is the orbital rate, 1.05mrad/min, of the satellite and O
O k  is the z-axis unit 

vector. 

6.2.3 Modified Equations of Motion 

For UO-22, the equations of motion were transformed from the standard set listed in 

Section 2.3.1. The torque balance equation was developed with the gravity gradient effect. 

This was done to better mimic the true dynamics of the satellite. All other torques on the 

system were neglected. The attitude equation was also changed. UO-22 is gravity gradient 

and spin stabilized, therefore, UO-22’s attitude with respect to the Orbit CS is known and 

unchanging, except for a rotation about the z-axis. Due to this fact, it is much easier to 

understand UO-22’s attitude over time as Control CS with respect to Orbit CS. The 

following are the modified equations used:  
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6.2.4 Moment of Inertia 

 Several sources of physical information about the satellite were compared. The information 

gathered contained some inconsistency. Following is a listing of the sources found and the 

information provided: 

 

From the Small Satellite Home Page at University of Surrey [16]: 
…The 48.4kg microsatellite is box shaped with dimensions 

350x350x650mm, with four solar panels on the larger facets, and a 

6m gravity gradient boom… 

 

From the AMSAT Home Page [15]: 
 …Weight: 48.4 kg 

 Size: 350 x 350 x 650 mm… 
 

From the AMSAT Journal [14]: 
 …Height: 600 mm and 5 Meter Gravity Gradient Boo with 3 Kg tipmass 

 Width: 300 mm 

 Depth: 300 mm 

 Weight: 46 Kg… 
 

The physical parameters used were: weight 48.4kg, size 350x350x650mm, boom length 

6m, boom mass 3kg. 

 

When looking at rotations about the x and y axes, UO-22 can be approximated with two 
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lumped point masses at the tips of a 6m mass-less rod. When looking at rotations about the 

z-axis, it can be approximated as a uniformly distributed mass over a 350mm x 350mm 

square. 

 

The moment of inertia about the x and y axes is: 

∑==
i

iiyx rmII 2

2
1      (6.8) 

where ir  is the distance of im  from the center of mass about the axis in question. 
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 and the moment of inertia about the z-axis is simply: 
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2
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    (6.10) 
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7. Observer Experiments 

 Two types of simulation and one experiment were performed. The first simulation verified 

that the satellite dynamic model was operating correctly. The second simulation verified 

the observer design by using a dipole based magnetic field. The experiment tested the 

observer using real UO-22 magnetometer readings and IGRF based Earth’s magnetic field 

predictions.  This gave final verification that the full system was operational.  

 

7.1 Dynamics Simulation 

 This simulation confirmed that the dynamic model presented in Section 6.2.3 and 

numerical integration method presented in Section 2.4 converged to the expected motion of 

the satellite. The matlab script used to run this simulation can be found in the ‘matlab\igrf’ 

directory and is called ‘sat_sim.m’. 
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Figure 7.1: UO-22 Simulation 

 The first three subplots show the x-y-z Euler rotations of the Control CS with respect to the 

Orbit CS, or the angles associated with the rotation O
C q . The other three subplots show the 

x-y-z angular rates of the Control CS with respect to the Orbit CS, expressed in the Control 
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CS, or the components of CO
Cω . The coordinate systems and format of Figure 7.1 will be 

used for all results in this section. By looking at the z-rotation subplot, it is clear that the 

satellite is rotating rapidly in one direction about its z-axis. A small resolution problem can 

also be seen in this plot. The rotation seems to be modulated by a much lower frequency. 

This effect is occurred when the time step in the simulation was 30 seconds. A time step of 

10 seconds reduces the effect significantly. The rotation in the z-rotation plot matches the 

spin of 0.0104rad/s imparted on the satellite by the initial conditions. The spin was added 

to resemble the true satellites spin stabilization of one rotation every ten minutes. By 

looking at the x-rotation and y-rotation subplots, it can be seen that the satellite is wobbling 

a very small amount, less than 0.1rad peak, about these axes. The wobble was due to the 

torque caused by the cross product of z-axis spinning and the orbital rate. The orbital rate is 

not visible in the Orbit CS; this was expected. The torque which caused the wobble was 

clearly opposed by a restoring torque which brought the satellite back toward zero rotation. 

The restoring torque is the gravity gradient effect discussed in Section 6.2.2. Finally, it is 

hard to decode information from the x-rate and y-rate subplots. These graphs do show the 

z-axis spinning discussed earlier, and they show that the rate about these axes is very small. 

These results match the expected motion and confirmed the methods used. 

 

7.2 Observer Simulation (Dipole Model) 

 A dipole model, the magnetic field of a simple current loop, was generated, and a circular 

orbit was placed around it. A reference magnetic field vector was then determined based on 

that orbit. Two simulations of the satellite were then run in parallel: one was called the 

‘real’ satellite; the other was called the ‘estimate’. The two simulations were given 

different initial conditions to represent the initial error of the observer. The magnetometer 

measurements were simulated by rotating the reference magnetic field vector with the 

‘real’ satellite attitude. The predicted measurements were simulated by rotating the 

reference magnetic field vector with the ‘estimate’ satellite attitude. 
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Figure 7.2: Observer Gain: 0.01 Initial Error: 6deg about y-axis 

 
 All graphs in this section show the ‘real’ satellite in yellow (or lighter) and the ‘estimate’ 

satellite in blue (or darker). The figure above shows the convergence of the estimate for a 

moderate observer gain and a moderate initial error about the y-axis. The observer could 

tolerate very high gain and very high initial error when the error was about the y-axis. 
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Figure 7.3: Observer Gain: 0.01 Initial Error: 0.2x 
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 For the series of plots in Figure 7.3, the initial error was moved to the x-axis; the gain was 

unchanged. This series of plots is not converging on a good estimate of the state.  
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Figure 7.4:Gain=0.003 error=0.2x 

 The series of plots in Figure 7.4 represents a much smaller observer gain but maintains the 

initial error about the x-axis. This setup converged to a good estimate in a reasonable time. 

The observer could converge for somewhat higher initial errors as long as the gain was 

kept low. 
 

 The observer was able to converge for errors about the z-axis as well. As with x-axis 

errors, the gain had to be kept low. No simulations were done with very small rate errors; 

however, the observer was not able to converge for high rate errors. Clearly, the observer 

was capable of converging on a good state estimate. It is equally true that better 

performance than this should be possible. The observer was definitely more sensitive to 

errors about the x-axis and z-axis than to errors about the y-axis. This sensitivity was 

probably due to the lack of a rate update formula in the observer equations specified in 

Section 5.2.  
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7.3 Observer Experiment (Telemetry and IGRF model) 

 As described in Section 6.1, data for UO-22 was collected. Magnetometer readings and 

position information corresponding to each reading were taken. This data went through 

several stages of processing which have already been described. The experiments were 

performed exactly in the manner described for simulations in Section 7.2 except that there 

was no need for a ‘real’ satellite simulation. The measurement was taken directly from the 

magnetometers, and the measurement estimate was generated using the IGRF model. 
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Figure 7.5: Observer Gain: 0.004 Initial Error: Unknown 

 The series of plots in Figure 7.5 follow the same basic format outlined in Section 7.1. The 

figure shows estimates. The real values of the six variables shown are not known, however, 

some assumptions can be made. The x-rotation and the y-rotation should be essentially 

zero, and they should certainly never perform a full or even quarter revolution. The z-

rotation should display the characteristic 10min rotation period. The x-rate and y-rate 

should be essentially zero, and the z-rate should show the 10min rotation period as well. 

The figure shows the y-axis rotation converging on zero and the x-axis rotation teetering a 

small amount around zero. The z-axis rotation is displaying the appropriate spin, and the 

z-rate is converging to the appropriate spin rate. The other two rates are quit close to zero. 

There was a good deal of sensitivity to observer gain selection in this experiment. This was 

expected given the results in Section 7.2. 
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7.4 Discussion 

 There is an unexplained sensitivity to initial conditions about the x-axis and z-axis. There 

is also a definite relationship between the z-rate estimate and the y-rotation estimate. These 

affects appear to be related but the cause is unknown. The x-axis and y-axis should be 

relatively indistinguishable in the Control CS given the spin about the z-axis. 

 

 The problem probably lies in the lack of a rate update formula. In [2], a rate update formula 

is proposed. In [1], there is no need for a rate update formula because rates are not used in 

the equations of motion. Either of these approaches could yield improved results. 

 

7.5 Other Simulations 

 An unsuccessful attempt was made to duplicate the innovation definition and Kalman 

update formulas from [2]. First, the innovation formulas were implemented in a fixed gain 

observer. The state estimate formulated in the simulations did not converge. However, the 

attitude kinematics and dynamics equations from [2] were not used directly. [2] used 

linearized equations but the simulations were performed with the nonlinear equations 

stated in Section 6.2.3. Also, [2] modeled some torques which were omitted in the 

simulations here. These differences may explain the poor results. Unfortunately, to 

investigate this problem would require more time. 

 

 After this initial work, a close examination of the innovation formula from [2] resulted in 

the innovation description in Section 5.2. With the new innovation formulas, the results 

presented in Section 7.1-7.4 were acquired. Some further attempts to integrate the results 

from [2] with the innovation definition given here were made without success. 
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8. Conclusions and Future Work 

 This project began with the goal of simulating attitude estimation techniques based on 

Kalman filtering for spacecraft attitude control. Many aspects have been completed, but 

there is still significant work to be done.  

 

 Spacecraft attitude kinematics and dynamics were discussed, including quaternion based 

attitude representations and numerical integration techniques. An investigation of 

estimation theory, especially the extended Kalman filter, was carried out. A concise 

description of estimation theory as it pertains to spacecraft attitude estimation was stated. 

The implications of a Kalman filter on various sensors was discussed. A detailed 

investigation of how to incorporate vector magnetic field measurements into a state 

estimation algorithm was shown. And a formula for observer innovation based on vector 

measurements was developed.  

 

 The satellite UO-22 was selected as a test subject to prove the results. Attitude kinematics 

and dynamics equations specific to UO-22 were formulated, and simulations were 

performed. An observer was simulated for both a dipole magnetic field and the IGRF 

model of the Earth’s magnetic field. These simulations successfully captured the real 

dynamics of the satellite, and the state estimates converged to the satellites known attitude. 

 

 Significant work still needs to be done. A definition for innovation based on rate needs to 

be determined or ruled out completely. The performance of the observer demonstrated 

must be evaluated in detail; improvement may be possible. Finally, extended Kalman 

update formulas and cycle by cycle linearization of the equations of motion need to be 

developed. The matlab routines developed for this project include the facility to add all of 

these aspects. 



 

  
 

 

 

 

 

 

 

Appendix A 
Matlab Code Structure: 

Dipole Model 



 

  
 

Dipole Model 
 
Observer Routine (sat_fix.m) - working 
====================================== 
 
 Set the moment of inertia 'I' for later use by linear and  
 non-linear satellite models. 
 
 Set sample rate in seconds 'T' 
 
 Set damping 'd' - always set to zero 
 
 set length of run in samples 'N' 
 
 simulate magnetic field vectors in orbital coordinates using 
 dipole model 
 
 set initial conditions for state estimate 'x_est' 
 
 set initial conditions for the simulation 'x_real' 
 
 Set initial conditions for input 'g' - always set to zero 
 
 begin observer simulation 
 
  'q_est', 'w_est' and 'q_real' temporarily hold the  
  current state estimate 
 
  pridict the measurement 'b_pri'. The pridiction is the  
  current estimated attitude rotation applied to the simulated 
  earth's magnetic field vector. 
 
  simulate the measurement 'b_meas'. The measurement is 
  the current simulated attitude rotation applied to the 
  simulated earth's magnetic field vector. 
 
  calculate the measurement inovation 'v' 
 
  update the attitude estimate 'q_est' by rotating about the 
  'v' axis with a fixed gain. 
 
  renormalize the attitude estimate 
 
  estimate the next cycle's a priori state 
  simulate the next cycle's actual state 
   
 generate output plot 
 
 



 

  
 

Dipole Model (cont.) 
Kalman Filter Routine (sat_ekf.m) - not working 
=============================================== 
 Set the moment of inertia 'I' for later use by linear and  
 non-linear satellite models. 
 
 Set sample rate in seconds 'T' 
 
 Set damping 'd' - always set to zero 
 
 set length of run in samples 'N' 
 
 simulate magnetic field vectors in orbital coordinates using 
 dipole model 
 
 set initial conditions for state estimate 'x_est' 
 
 set initial conditions for the simulation 'x_real' 
 
 Set initial conditions for input 'g' - always set to zero 
 
 initialize the error covariance matrixes 
  'Q' - Process error covarience 
  'R' - Measurement error covarience 
  'P' - Estimate error covarience 
 
 begin Kalman simulation 
  'q_est', 'w_est' and 'q_real' temporarily hold the  
  current state estimate 
 

  pridict the measurement 'b_pri'. The pridiction is the  
  current estimated attitude rotation applied to the simulated 
  earth's magnetic field vector. 
 

  simulate the measurement 'b_meas'. The measurement is 
  the current simulated attitude rotation applied to the 
  simulated earth's magnetic field vector. 
 

  linearize about current state estimate and estimate the 
  estimate error covarience 'P' 
 

  calculate the Kalman filter gain 'K' 
 

  update the state estimate covarience 'P' 
 

  calculate the measurement inovation 'v' 
 

  update the attitude estimate 'q_est' by rotating about the 
  'v' axis. 
 
  renormalize the attitude estimate 
 
  update the rate estimate 'w' in traditional manner 
 
  estimate the next cycle's a priori state 
  simulate the next cycle's actual stat 
 generate output plot 



 

  
 

 

 

 

 

 

 

Appendix B 
Matlab Code: 

Data Collection & IGRF Model 

 



 

  
 

Data Collection & IGRF Model 
Data Conversion - working 
========================= 
 
This section describes the data conversion code and how it works. 
 
First is the conversion to Earth's magnetic field vector for UO-22 
at actual locations in the time window of interest. 
 
 Raw data was gathered from Satellite tool kit and processed using 
 Excel. This data includes X- Y- Z- earth fixed position of UO-22 
 above the earth for the time window: 
    25Nov1999 02:26:35 to 25Nov1999 23:59:35 
 Output file - Uo22stk.txt 
 
 The data was then converted into Altitude Latitude and Longitude 
 for use by 'IGRFgeodetic.m' which interfaces with 'IGRF geodetic.c' 
 from Atsuhiko Sakura. creating Earth's Magnetic field vector in  
 North East Down Earth fixed coordinates. 
 Output file - Uo22igrf.mat 
 
 The data was further converted to orbital coordinates using 
 'IGRFgeodetic.m' Once in orbital coordinates the data could 
 be used by the Observer or Kalman filter routines. 
 Output file - Uo22be.mat 
 
Now the conversion of UO-22 telemetry data to useful form. 
 
 Raw data was gathered from UO-22 telemetry files using Laura 
 Hallidays program 'vbtlm' and processed with Excel. 
 The result was - Uo22tel.txt 
 
 This data is normalized by the function 'getbmag.m'. 
 'getbmag.m' is called by the Observer or Kalman filter routines. 
 
 



 

  
 

Data Collection & IGRF Model (cont.) 
 
Observer Routine (sat_fix.m) - working 
====================================== 
 
 Set the moment of inertia 'I' for later use by linear and  
 non-linear satellite models. 
 
 Set sample rate in seconds 'T' 
 
 Set damping 'd' - always set to zero 
 
 load earths magnetic field vector 'b_IGRF' 
 
 load magnetometer data 'b_mag' via the function 'getbmag' 
  getbmag - reads and normalizes data file 'Uo22tel.txt' 
 
 Set initial conditions for state estimate 'x' 
 
 Set initial conditions for input 'g' - always set to zero 
 
 begin observer simulation 
 
  'q' and 'w' temporarily hold the current state estimate 
 
  pridict the measurement 'b_pri'. The pridiction is the  
  current attitude rotation applied to the actual earth's  
  magnetic field vector at that time. 
 
  calculate the measurement inovation 'v' 
 
  update the attitude estimate 'q' by rotating about the 
  'v' axis with a fixed gain. 
 
  renormalize the attitude estimate 
 
  estimate the next cycle's a priori state 
   
 generate output plot 
 
 



 

  
 

Data Collection & IGRF Model (cont.) 
 
Kalman Filter Routine (sat_ekf.m) - not working 
=============================================== 
 
 set the moment of inertia 'I' for later use by linear and  
 non-linear satellite models. 
 
 set sample rate in seconds 'T' 
 
 set damping 'd' - always set to zero 
 
 load earths magnetic field vector 'b_IGRF' 
 
 load magnetometer data 'b_mag' via the function 'getbmag' 
  getbmag - reads and normalizes data file 'Uo22tel.txt' 
 
 set initial conditions for state estimate 'x' 
 
 set initial conditions for input 'g' - always set to zero 
 
 initialize the error covariance matrixes 
  'Q' - Process error covarience 
  'R' - Measurement error covarience 
  'P' - Estimate error covarience 
 
 begin Kalman simulation 
 
  'q' and 'w' temporarily hold the current state estimate 
 
  pridict the measurement 'b_pri'. The pridiction is the  
  current attitude rotation applied to  the actual earth's  
  magnetic field vector at that time. 
 
  linearize about current state estimate and estimate the 
  estimate error covarience 'P' 
 
  calculate the Kalman filter gain 'K' 
 
  update the state estimate covarience 'P' 
 
  calculate the measurement inovation 'v' 
 
  update the attitude estimate 'q' by rotating about the 
  'v' axis. 
 
  renormalize the attitude estimate 
 
  update the rate estimate 'w' in traditional manner 
 
  estimate the next cycle's a priori state 
   
 generate output plot 
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